2023 Annual Drinking Water Quality Report "Town of Bostic"

Water System Number: "01-81-040"

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is a snapshot of last year's water quality. Included are details about your source(s) of water, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and to providing you with this information because informed customers are our best allies. If you have any questions about this report or concerning your water, please contact Cindy Moore at 828-245-5108. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings.

What EPA Wants You to Know

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Town of Forest City is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

When You Turn on Your Tap, Consider the Source

The water that is used by this system is surface water and our raw water intake is located at 518 Rock Corner Rd. Forest City, 28043 12/2023

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environmental Quality (DEQ), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a relative susceptibility rating of Higher, Moderate or Lower.

The relative susceptibility rating of each source for The Town of Forest City was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Sources (PCSs)

Source Name	Susceptibility Rating	SWAP Report Date
2 nd Broad River	Moderate	September 9, 2020

The complete SWAP Assessment report for The Town of Forest City may be viewed on the Web at: https://www.ncwater.org/?page=600 Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program — Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@deq.nc.gov. Please indicate your system name, number, and provide your name, mailing address and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Help Protect Your Source Water

You can help protect your community's drinking water source(s) in several ways: (examples: dispose of chemicals properly; take used motor oil to a recycling center, volunteer in your community to participate in group efforts to protect your source, etc.).

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environmental Quality (DEQ), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP Assessment Reports that include maps, background information and a relative susceptibility rating of Higher, Moderate or Lower.

The relative susceptibility rating of each source for The Town of Forest City was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings are summarized in the table below:

Susceptibility of Sources to Potential Contaminant Sources (PCSs)

Source Name	Susceptibility Rating	SWAP Report Date
2 nd Broad River	Moderate	September 9, 2020

The complete SWAP Assessment report for The Town of Forest City may be viewed on the Web at: https://www.ncwater.org/?page=600 Note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this CCR was prepared. If you are unable to access your SWAP report on the web, you may mail a written request for a printed copy to: Source Water Assessment Program — Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email requests to swap@deq.nc.gov. Please indicate your system name, number, and provide your name, mailing address and phone number. If you have any questions about the SWAP report, please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Help Protect Your Source Water

You can help protect your community's drinking water source(s) in several ways: (examples: dispose of chemicals properly; take used motor oil to a recycling center, volunteer in your community to participate in group efforts to protect your source, etc.).

Important Drinking Water Definitions:

- O Not-Applicable (N/A) Information not applicable/not required for that particular water system or for that particular rule.
- o Non-Detects (ND) Laboratory analysis indicates that the contaminant is not present at the level of detection set for the particular methodology used.
- o Parts per million (ppm) or Milligrams per liter (mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- O Parts per billion (ppb) or Micrograms per liter (ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- o Parts per trillion (ppt) or Nanograms per liter (nanograms/L) One part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- o Parts per quadrillion (ppq) or Picograms per liter (picograms/L) One part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000.
- o Picocuries per liter (pCi/L) Picocuries per liter is a measure of the radioactivity in water.
- o Million Fibers per Liter (MFL) Million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- Nephelometric Turbidity Unit (NTU) Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
- Variances and Exceptions State or EPA permission not to meet an MCL or Treatment Technique under certain conditions.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Maximum Residual Disinfection Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is
 convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Residual Disinfection Level Goal (MRDLG) The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Locational Running Annual Average (LRAA) The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters under the Stage 2 Disinfectants and Disinfection Byproducts Rule.
- Running Annual Average (RAA) The average of sample analytical results for samples taken during the previous four calendar quarters.
- Level 1 Assessment A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
- Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- > Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Water Quality Data Tables of Detected Contaminants

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we <u>detected</u> in the last round of sampling for each particular contaminant group. The presence of contaminants does <u>not</u> necessarily indicate that water poses a health risk. **Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2023.** The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Inorganic Contaminants

	Sample	MCL	Your	Rai	nge		T	
Contaminant (units)	Date	Violation Y/N	Water	Low	High	MCLG	MCL	Likely Source of Contamination
Antimony (ppb)	5-17-23	N	Not Detected			6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	5-17-23	N	Not Detected			0	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium (ppm)	5-17-23	N	Not Detected			2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium (ppb)	5-17-23	N	Not Detected			4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5-17-23	N	Not Detected			5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	5-17-23	N	Not Detected			100	100	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide (ppb)	5-17-23	N	Not Detected			200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride (ppm)	5-17-23	N	0.55mg/L			4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (inorganic) (ppb)	5-17-23	N	Not Detected			2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Selenium (ppb)	5-17-23	N	Not Detected			50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	5-17-23	N	Not Detected			0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories

Arsenic: While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Nitrate/Nitrite Contaminants

THE MECO ! THE THE CONTENTIAL							
Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Nitrate (as Nitrogen) (ppm)	5-17-23	N	Not Detected	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen) (ppm)	5-17-23	N	Not Detected	N/A	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Nitrate: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Water Quality Data Tables of Detected Contaminants

We routinely monitor for over 150 contaminants in your drinking water according to Federal and State laws. The tables below list all the drinking water contaminants that we detected in the last round of sampling for each particular contaminant group. The presence of contaminants does <u>not</u> necessarily indicate that water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2023. The EPA and the State allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old.

Inorganic Contaminants

	Sample	MCL	Your	Ra	nge	1401.6	MCI	Likely Source of Contamination
Contaminant (units)	Date	Violation Y/N	Water	Low	High	MCLG	MCL	
Antimony (ppb)	5-17-23	N	Not Detected			6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	5-17-23	N	Not Detected			0	10	Erosion of natural deposits; runoff from orehards; runoff from glass and electronics production wastes
Barium (ppm)	5-17-23	N	Not Detected			2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium (ppb)	5-17-23	N	Not Detected			4	4	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5-17-23	N	Not Detected			5	5	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	5-17-23	N	Not Detected			100	100	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide (ppb)	5-17-23	N	Not Detected			200	200	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride (ppm)	5-17-23	N	0.55mg/L			4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (inorganic) (ppb)	5-17-23	N	Not Detected			2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Selenium (ppb)	5-17-23	N	Not Detected			50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium (ppb)	5-17-23	N	Not Detected			0.5	2	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories

Arsenic: While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Nitrate/Nitrite Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Nitrate (as Nitrogen) (ppm)	5-17-23	N	Not Detected	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen) (ppm)	5-17-23	N	Not Detected	N/A	1	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Nitrate: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Asbestos Contaminant

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL	Likely Source of Contamination
Total Asbestos (MFL)	5-18-21	N	Not Detected		7	7	Decay of asbestos cement water mains; erosion of natural deposits

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Range Low High	MCLG	MCL .	Likely Source of Contamination
2,4-D (ppb)	8-16-23	N	Not Detected	÷	70	70	Runoff from herbicide used on row crops
2,4,5-TP (Silvex) (ppb)	8-17-21	N	Not Detected		50	50	Residue of banned herbicide
Alachlor (ppb)	8-17-21	N	Not Detected		0	2	Runoff from herbicide used on row crops
Atrazine (ppb)	8-17-21	N	Not Detected		3	3	Runoff from herbicide used on row crops
Benzo(a)pyrene (PAH) (ppt)	8-17-21	N	Not Detected		0	200	Leaching from linings of water storage tanks and distribution lines
Carbofuran (ppb)	8-17-21	N	Not Detected		40	40	Leaching of soil fumigant used on rice and alfalfa
Chlordane (ppb)	8-17-21	N	Not Detected		0	2	Residue of banned termiticide
Dalapon (ppb)	8-17-21	N	Not Detected		200	200	Runoff from herbicide used on rights o way
Di(2-ethylhexyl) adipate (ppb)	8-17-21	N	Not Detected		400	400	Discharge from chemical factories
Di(2-ethylhexyl) phthalate (ppb)	8-17-21	N	Not Detected		0	6	Discharge from rubber and chemical factories
DBCP [Dibromochloropropane] (ppt)	8-17-21	N	Not Detected		0	200	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dinoseb (ppb)	8-17-21	. N	Not Detected		7	7	Runoff from herbicide used on soybeans and vegetables
Endrin (ppb)	8-17-21	N	Not Detected		2	2	Residue of banned insecticide
EDB [Ethylene dibromide] (ppt)	8-17-21	N	Not Detected		0	50	Discharge from petroleum refineries
Heptachlor (ppt)	8-17-21	N	Not Detected		0	400	Residue of banned pesticide
Heptachlor epoxide (ppt)	8-17-21	N	Not Detected		0	200	Breakdown of heptachlor
Hexachlorobenzene (ppb)	8-17-21	N	Not Detected		0	1	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclo- pentadiene (ppb)	8-17-21	N	Not Detected		50	50	Discharge from chemical factories
Lindane (ppt)	8-17-21	N	Not Detected		200	200	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	8-17-21	N	Not Detected		40	40	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	8-17-21	N	Not Detected		200	200	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
PCBs [Polychlorinated biphenyls] (ppt)	8-17-21	N	Not Detected		0	500	Runoff from landfills; discharge of waste chemicals
Pentachlorophenol (ppb)	8-17-21	N	Not Detected		0	1	Discharge from wood preserving factories
Picloram (ppb)	8-17-21	N	Not Detected		500	500	Herbicide runoff
Simazine (ppb)	8-17-21	N	Not Detected		4	4	Herbicide runoff
Toxaphene (ppb)	8-17-21	N	Not Detected		0	3	Runoff/leaching from insecticide used on cotton and cattle

Volatile Organic Chemical (VOC) Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Ra Low	nge High	MCLG	MCL	Likely Source of Contamination
Benzene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ppb)	6-21-23	N	Not Detected			0	5	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	6-21-23	N	Not Detected			600	600	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	6-21-23	N	Not Detected			75	75	Discharge from industrial chemical factories
1,2 - Dichloroethane (ppb)	6-21-23	N	Not Detected			0	5	Discharge from industrial chemical factories
1,1 - Dichloroethylene (ppb)	6-21-23	N	Not Detected			7	7	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	6-21-23	N	Not Detected			70	70	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from industrial chemical factories
Dichloromethane (ppb)	6-21-23	N	Not Detected			0	5	Discharge from pharmaceutical and chemical factories
1,2-Dichloropropane (ppb)	6-21-23	N	Not Detected			0	5	Discharge from industrial chemical factories
Ethylbenzene (ppb)	6-21-23	N	Not Detected			700	700	Discharge from petroleum refineries
Styrene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from factories and dry cleaners
1,2,4 –Trichlorobenzene (ppb)	6-21-23	N	Not Detected			70	70	Discharge from textile-finishing factories
1,1,1 – Trichloroethane (ppb)	6-21-23	N	Not Detected			200	200	Discharge from metal degreasing sites and other factories
1,1,2 -Trichloroethane (ppb)	6-21-23	N	Not Detected			3	5	Discharge from industrial chemical factories
Trichloroethylene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from metal degreasing sites and other factories
Toluene (ppm)	6-21-23	N	Not Detected			1	1	Discharge from petroleum factories
Vinyl Chloride (ppb)	6-21-23	N	Not Detected			0	2	Leaching from PVC piping; discharge from plastics factories
Xylenes (Total) (ppm)	6-21-23	N	Not Detected			10	10	Discharge from petroleum factories: discharge from chemical factories

Radiological Contaminants

idiviogical Contamina							
Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water (RAA)	Range Low High	MCLG	MCL	Likely Source of Contamination
Alpha emitters (pCi/L) (Gross Alpha Excluding Radon and Uranium)	9-21-21	N	Not Detected		0	15	Erosion of natural deposits
Beta/photon emitters (pCi/L)	9-21-21	N	Not Detected		0	50 *	Decay of natural and man-made deposits
Combined radium (pCi/L)	9-21-21	N	Not Detected		0	5	Erosion of natural deposits
Uranium (pCi/L)	9-21-21	N	Not Detected		0	20.1	Erosion of natural deposits

^{*} Note: The MCL for beta/photon emitters is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

Volatile Organic Chemical (VOC) Contaminants

Contaminant (units)	Sample Date	MCL Violation Y/N	Your Water	Ra Low	nge High	MCLG	MCL	Likely Source of Contamination
Benzene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from factories; leaching from gas storage tanks and landfills
Carbon tetrachloride (ppb)	6-21-23	N	Not Detected			0	5	Discharge from chemical plants and other industrial activities
Chlorobenzene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene (ppb)	6-21-23	N	Not Detected			600	600	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	6-21-23	N	Not Detected		_	75	75	Discharge from industrial chemical factories
1,2 – Dichloroethane (ppb)	6-21-23	N	Not Detected			0	. 5	Discharge from industrial chemical factories
1,1 - Dichloroethylene (ppb)	6-21-23	N	Not Detected			7	7	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	6-21-23	N	Not Detected			70	70	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from industrial chemical factories
Dichloromethane (ppb)	6-21-23	N	Not Detected			0	5	Discharge from pharmaceutical and chemical factories
1.2-Dichloropropane (ppb)	6-21-23	N	Not Detected			0	5	Discharge from industrial chemical factories
Ethylbenzene (ppb)	6-21-23	N	Not Detected			700	700	Discharge from petroleum refineries
Styrene (ppb)	6-21-23	N	Not Detected			100	100	Discharge from rubber and plastic factories; leaching from landfills
Tetrachioroethylene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from factories and dry cleaners
1,2,4 –Trichlorobenzene (ppb)	6-21-23	N	Not Detected			70	70	Discharge from textile-finishing factories
1,1,1 - Trichloroethane (ppb)	6-21-23	N	Not Detected			200	200	Discharge from metal degreasing sites and other factories
1,1,2 -Trichloroethane (ppb)	6-21-23	N	Not Detected			3	5	Discharge from industrial chemical factories
Trichloroethylene (ppb)	6-21-23	N	Not Detected			0	5	Discharge from metal degreasing sites and other factories
Toluene (ppm)	6-21-23	N	Not Detected			1	1	Discharge from petroleum factories
Vinyl Chloride (ppb)	6-21-23	N	Not Detected			0	2	Leaching from PVC piping; discharge from plastics factories
Xylenes (Total) (ppm)	6-21-23	N	Not Detected			10	10	Discharge from petroleum factories; discharge from chemical factories

Radiological Contaminants

adiologicai Comaminiai	1115						T
Contaminant (units)	Sample Date	MCI. Violation Y/N	Your Water (RAA)	Range Low High	MCLG	MCL	Likely Source of Contamination
Alpha emitters (pCi/L) (Gross Alpha Excluding Radon and Uranium)	9-21-21	N	Not Detected		0	15	Erosion of natural deposits
Beta/photon emitters (pCi/L)	9-21-21	N	Not Detected		0	50 *	Decay of natural and man-made deposits
Combined radium (pCi/L)	9-21-21	N	Not Detected		0	5	Erosion of natural deposits
Uranium (pCi/L)	9-21-21	N	Not Detected		0	20.1	Erosion of natural deposits

^{*} Note: The MCL for beta/photon emitters is 4 mrem/year. EPA considers 50 pCi/L to be the level of concern for beta particles.

Lead and Copper Contaminants

Contaminant (units)	Sample Date	Your Water (90th Percentile)	Number of sites found above the AL	MCLG	AL	Likely Source of Contamination
Copper (ppm) (90 th percentile)	8/23	Not Detected	0	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb) (90 th percentile)	8/23	Not Detected	0	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits

Total Organic Carbon (TOC)

Commo Chilo	VA (100)					
Contaminant (units)	TT Violation Y/N	Your Water (lowest RAA)	Range Monthly Removal Ratio Low - High	MCLG	Treatment Technique (TT) violation if:	Likely Source of Contamination
Total Organic Carbon (TOC) Removal Ratio (no units)	N	Not Detected	100%	N/A	Removal Ratio RAA <1.00 and alternative compliance criteria was not met	Naturally present in the environment

Disinfectant Residuals Summary

	MRDL	Your Water	Ra	Range MRDLG MRDL	Likely Source of Contamination		
	Violation Y/N	(RAA)	Low	High	IMKDLG	MIKDL	Energy Source of Containmation
Chlorine (ppm)	N	1.12	.15	1.66	4	4.0	Water additive used to control microbes
Chloramines (ppm)	N/A	N/A			4	4.0	Water additive used to control microbes
Chlorine dioxide (ppb)	N/A	N/A			800	800	Water additive used to control microbes

Total Trihalomethanes (TTHM) and Haloacetic Acids (five) (HAA5)

Contaminant (units)	Year	MCL Violation	Your Water	Rar	nge	MCLG	MCL	Likely Source of Contamination
	Sampled Y/N		(highest LRAA)	Low	High	MCLG		
TTHM (ppb)	2023	N	1944 - 1944 - 1975 - 19		H-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	N/A	80	Byproduct of drinking water disinfection
B01	į.		29	20	36			
B02			33	20	45		100	
								46 May 1997
HAA5 (ppb)	2023	И	Commence of the party of the pa	T	77	N/A	60	Byproduct of drinking water disinfection
B01			13	11	15			
B02		700	14	11	17			All Control of the Co

Other Miscellaneous Water Characteristics Contaminants

Contaminant (units)	Sample Date	Your Water	Range Low High	SMCL
Iron (ppm)	4-12-22	Not Detected		0.3
Manganese (ppm)	4-12-22	Not Detected		0.05
Nickel (ppm)	4-12-22	Not Detected		N/A
Sodium (ppm)	4-12-22	8.9 mg/L		N/A
Sulfate (ppm)	4-12-22	Not Detected		250
рН	4-12-22	8.1		6.5 to 8.5

Other Miscellaneous Water Characteristics Contaminants

Contaminant (units)	Sample Date	Your Water	Range Low High	SMCL
Iron (ppm)	4-12-22	Not Detected		0.3
Manganese (ppm)	4-12-22	Not Detected		0.05
Nickel (ppm)	4-12-22	Not Detected		N/A
Sodium (ppm)	4-12-22	8.9 mg/L.		N/A
Sulfate (ppm)	4-12-22	Not Detected	·	250
рН	4-12-22	8.1		6.5 to 8.5

NOTICE TO THE PUBLIC

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

BOSTIC, TOWN OF HAS NOT MET MONITORING REQUIREMENTS

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the compliance period specified in the table below, we ['did not monitor or test' or 'did not complete all monitoring or testing'] for the contaminants listed and therefore cannot be sure of the quality of your drinking water during that time.

CONTAMINANT GROUP**	FACILITY ID NO./ SAMPLE POINT ID	COMPLIANCE PERIOD BEGIN DATE	NUMBER OF SAMPLES/ SAMPLING FREQUENCY	WHEN SAMPLES WERE OR WILL BE TAKEN (Water System to Complete)
Disinfection Byproducts (DBP)	D01 / B01	October 1, 2023	1 / QUARTERLY	

^{**} See back of this notice for further information on contaminants.

What should I do? There is nothing you need to do at this time.

What is being done? [Describe corrective action.]

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

•							
System Name	System Address (Street)						
BOSTIC, TOWN OF	104 Pearide Rol						
System Number	System Address (City/State/Zip)						
NC0181040	Bostic, NC 28043						
Violation Awareness Date: January 17, 2024 Distributed Vianselogage of CCR Report https://townorpostic.com/ccr/ Date Notice Distributed: 5/24/2024 Method of Distribution: Included W/CCR Report; Notice							
Method of Distribution: Ir	ichieled w/ CCR Report; Notice						
Public Notification Certification							
The public water system named above hereby affirms that public notification has been provided to its consumers in accordance with all delivery, content, format, and deadline requirements specified in 15A NCAC 18C .1523. Owner/Operator: (Signature) (Print Name)							
	System Number NC0181040 17, 2024 Def Public Notification Certification hereby affirms that public notification has eadline requirements specified in 15A NC						

Contaminant Group List

(AS) Asbestos - includes testing for Total Asbestos.

(BA) Total Coliform Bacteria – includes testing for Total Coliform bacteria and E.coli bacteria. Testing for E.coli bacteria is required if total coliform is present in the sample.

(B) Bromate - includes testing for Bromate.

(CD) Chlorine Dioxide/Chlorite - includes testing for Chlorine Dioxide and/or Chlorite.

(DI) Disinfectant Residual must be tested with the collection of each compliance bacteriological sample, at the same time and site.

Fecal Indicators - includes E.coli, enterococci or coliphage.

(HAA5)- Haloacetic Acids - includes Monochloroacetic Acid, Dichloroacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Dibromoacetic Acid, Trichloroacetic Acid, Monobromoacetic Acid, Monobromoaceti

(IOC) Inorganic chemicals - includes Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cyanide, Fluoride, Iron, Manganese, Mercury, Nickel, pH, Selenium, Sodium, Sulfate, and Thallium.

(LC) Lead and Copper are tested by collecting the required number of samples and testing each of the samples for both lead and copper.

(NT) Nitrate/ (NI) Nitrite - includes testing for nitrate and/or nitrite.

(RA) Radionuclides – includes Gross Alpha, Radon, Uranium, Combined Radium, Radium 226, Radium 228, Potassium 40 (Total), Gross Beta, Tritium, Strontium 89, Strontium 90, Iodine 131, and Cesium 134.

(SOC) – Synthetic Organic Chemicals/Pesticides – includes 2,4-D, 2,4,5-TP (Silvex), Alachlor (Lasso), Atrazine, Benzo(a)pyrene, Carbofuran, Chlordane, Dalapon, Di(2-ethylhexyl)adipate, Di(2-ethylhexyl)phthalate, Dibromochloropropane (DBCP), Dinoseb, Endrin, Ethylene dibromide (EDB), Heptachlor, Heptachlor Epoxide, Hexachlorobenzene, Hexachlorocyclopentadiene, Lindane (BHC-Gamma), Methoxychlor, Oxamyl (Vydate), PCBs, Pentachlorophenol, Picloram, Simazine, and Toxaphene.

(TOC) - Total Organic Carbon - includes testing for Alkalinity, Dissolved Organic Carbon (DOC), Total Organic Carbon (TOC) and Ultraviolet Absorption 254 (UV254). Source water samples must be tested for both TOC and Alkalinity. Treated water samples must be tested for TOC. Source water samples and treated water samples must be collected on the same day.

(TTHM) - Total Trihalomethanes - includes Chloroform, Bromoform, Bromodichloromethane, and Dibromochloromethane.

(VOC) - Volatile Organic Chemicals - includes 1,2,4-Trichlorobenzene, Cis-1,2-Dichloroethylene, Xylenes (Total), Dichloromethane, o-Dichlorobenzene, p-Dichlorobenzene, Vinyl Chloride, 1,1,-Dichloroethylene, Trans-1,2,-Dichloroethylene, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,2-Dichloropropane, Trichloroethylene, 1,1,2-Trichloroethane, Tetrachloroethylene, Chlorobenzene, Benzene, Toluene, Ethylbenzene, and Styrene.

(WQP) Water Quality Parameters (for Lead and Copper Rule) - includes Calcium, Orthophosphate (as PO₄), Silica, Conductivity, pH, Alkalinity and Water Temperature.

Instructions for Completing the Notice/Certification Form & for Performing Public Notice for Tier 3 Monitoring Violations

- 1. Complete <u>ALL</u> the missing information on the "Notice to the Public." (Note: Under the section of the notice entitled "What is being done?" describe corrective actions you took, or are taking. You may choose the appropriate language below, or develop your own:
 - We have since taken the required samples, as described in the last column of the table above. The sample results showed we are meeting drinking water standards.
 - We have since taken the required samples, as described in the last column of the table above. The sample for [contaminant] exceeded the limit. [Describe corrective action; use information from public notice prepared for violating the limit.]
 - We plan to take the required samples soon, as described in the last column of the table above.

2. Provide public notification to your customers as soon as reasonably possible after you learn of the violation as follows:

Community systems must use one of the following:

- Hand or direct delivery
- Mail, as a separate notice or included with the bill

For community systems, this notice is appropriate for insertion in an annual notice or the Consumer Confidence Report (CCR), as long as public notification timing and delivery requirements are met [CFR 141.204(d)].

Non-community systems must use one of the following:

- · Posting in conspicuous locations
- Hand delivery
- Mail

For non-community systems, if you post the notice, it must remain posted as long as the violation or situation persists; in no case should the notice be posted less than 7 days, even if the violation is resolved. [CFR 141.204(b)].

(Note: <u>Both</u> community and non-community systems must use *another* method reasonably calculated to reach others **IF** they would not be reached by one of the <u>required</u> methods listed above [CFR 141.204(c)]. Such methods could include newspapers, email, or delivery to community organizations.

- Both sides of this public notice/certification <u>MUST</u> be delivered to the persons served by the water system in order for your customers to have access to the required <u>Contaminant Group List.</u>
- If you mail, post, or hand deliver, print your notice on letterhead, if available.
- Notify new billing customers or units prior to or at the time their service begins.
- Provide multi-lingual notifications if 30% of the residents served are non-English speaking.
- Should you decide not to use this notice and develop your own version instead, the mandatory language in **bold italics** may not
 be altered, and you MUST include the ten required elements listed in CFR 141.205. The certification located at the bottom of this
 sample notice MUST also be submitted.
- 3. After issuing the "Notice to the Public" to your customers, sign and date the "Public Notification Certification" at the bottom of the notice. Within ten days after issuing the notice [CFR 141.31(d)], use our on-line ECERT application located on our website at: https://pws.ncwater.org/ECERT to submit your completed Notice/Certification to the Public Water Supply Section. If you do not have access to the internet, mail your completed Notice/Certification to: Public Water Supply Section, ATTN: Public Notification Rule Manager, 1634 Mail Service Center, Raleigh, NC 27699-1634.

Keep a copy for your files.